metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.35D12, C22.2Dic12, C6.8C4≀C2, C4⋊Dic3⋊3C4, (C2×C6).1Q16, (C2×Dic6)⋊2C4, C22⋊C8.1S3, (C2×C6).1SD16, (C2×C12).437D4, C6.3(C23⋊C4), (C22×C4).70D6, (C22×C6).39D4, C6.6(Q8⋊C4), C2.6(D12⋊C4), C22.4(C24⋊C2), C22.58(D6⋊C4), C12.48D4.1C2, C3⋊2(C23.31D4), C2.3(C2.Dic12), C6.C42.21C2, (C22×C12).40C22, C2.6(C23.6D6), (C2×C4).12(C4×S3), (C2×C12).24(C2×C4), (C3×C22⋊C8).1C2, (C2×C4).208(C3⋊D4), (C2×C6).39(C22⋊C4), SmallGroup(192,26)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.35D12
G = < a,b,c,d,e | a2=b2=c2=1, d12=cb=bc, e2=b, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=acd11 >
Subgroups: 256 in 80 conjugacy classes, 29 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, Q8, C23, Dic3, C12, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C24, Dic6, C2×Dic3, C2×C12, C2×C12, C22×C6, C2.C42, C22⋊C8, C22⋊Q8, Dic3⋊C4, C4⋊Dic3, C6.D4, C2×C24, C2×Dic6, C22×Dic3, C22×C12, C23.31D4, C6.C42, C3×C22⋊C8, C12.48D4, C23.35D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, SD16, Q16, C4×S3, D12, C3⋊D4, C23⋊C4, Q8⋊C4, C4≀C2, C24⋊C2, Dic12, D6⋊C4, C23.31D4, C23.6D6, C2.Dic12, D12⋊C4, C23.35D12
(2 25)(4 27)(6 29)(8 31)(10 33)(12 35)(14 37)(16 39)(18 41)(20 43)(22 45)(24 47)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 25)(15 26)(16 27)(17 28)(18 29)(19 30)(20 31)(21 32)(22 33)(23 34)(24 35)
(1 48)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 32)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 40)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 12 36 47)(2 23 37 34)(3 33 38 22)(4 44 39 9)(5 8 40 43)(6 19 41 30)(7 29 42 18)(10 15 45 26)(11 25 46 14)(13 24 48 35)(16 32 27 21)(17 20 28 31)
G:=sub<Sym(48)| (2,25)(4,27)(6,29)(8,31)(10,33)(12,35)(14,37)(16,39)(18,41)(20,43)(22,45)(24,47), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35), (1,48)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,12,36,47)(2,23,37,34)(3,33,38,22)(4,44,39,9)(5,8,40,43)(6,19,41,30)(7,29,42,18)(10,15,45,26)(11,25,46,14)(13,24,48,35)(16,32,27,21)(17,20,28,31)>;
G:=Group( (2,25)(4,27)(6,29)(8,31)(10,33)(12,35)(14,37)(16,39)(18,41)(20,43)(22,45)(24,47), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35), (1,48)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,12,36,47)(2,23,37,34)(3,33,38,22)(4,44,39,9)(5,8,40,43)(6,19,41,30)(7,29,42,18)(10,15,45,26)(11,25,46,14)(13,24,48,35)(16,32,27,21)(17,20,28,31) );
G=PermutationGroup([[(2,25),(4,27),(6,29),(8,31),(10,33),(12,35),(14,37),(16,39),(18,41),(20,43),(22,45),(24,47)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,25),(15,26),(16,27),(17,28),(18,29),(19,30),(20,31),(21,32),(22,33),(23,34),(24,35)], [(1,48),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,32),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,40),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,12,36,47),(2,23,37,34),(3,33,38,22),(4,44,39,9),(5,8,40,43),(6,19,41,30),(7,29,42,18),(10,15,45,26),(11,25,46,14),(13,24,48,35),(16,32,27,21),(17,20,28,31)]])
39 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 12 | 12 | 12 | 12 | 24 | 24 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | + | - | + | |||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | S3 | D4 | D4 | D6 | SD16 | Q16 | C4×S3 | C3⋊D4 | D12 | C4≀C2 | C24⋊C2 | Dic12 | C23⋊C4 | C23.6D6 | D12⋊C4 |
kernel | C23.35D12 | C6.C42 | C3×C22⋊C8 | C12.48D4 | C4⋊Dic3 | C2×Dic6 | C22⋊C8 | C2×C12 | C22×C6 | C22×C4 | C2×C6 | C2×C6 | C2×C4 | C2×C4 | C23 | C6 | C22 | C22 | C6 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 1 | 2 | 2 |
Matrix representation of C23.35D12 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 57 |
0 | 0 | 0 | 0 | 0 | 72 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
26 | 65 | 0 | 0 | 0 | 0 |
18 | 59 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 66 | 0 | 0 |
0 | 0 | 7 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 50 |
0 | 0 | 0 | 0 | 65 | 64 |
59 | 15 | 0 | 0 | 0 | 0 |
55 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 7 | 0 | 0 |
0 | 0 | 14 | 66 | 0 | 0 |
0 | 0 | 0 | 0 | 49 | 70 |
0 | 0 | 0 | 0 | 70 | 24 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,57,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[26,18,0,0,0,0,65,59,0,0,0,0,0,0,14,7,0,0,0,0,66,7,0,0,0,0,0,0,9,65,0,0,0,0,50,64],[59,55,0,0,0,0,15,14,0,0,0,0,0,0,7,14,0,0,0,0,7,66,0,0,0,0,0,0,49,70,0,0,0,0,70,24] >;
C23.35D12 in GAP, Magma, Sage, TeX
C_2^3._{35}D_{12}
% in TeX
G:=Group("C2^3.35D12");
// GroupNames label
G:=SmallGroup(192,26);
// by ID
G=gap.SmallGroup(192,26);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,85,92,422,387,268,570,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^12=c*b=b*c,e^2=b,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*c*d^11>;
// generators/relations