Copied to
clipboard

G = C23.35D12order 192 = 26·3

1st non-split extension by C23 of D12 acting via D12/D6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.35D12, C22.2Dic12, C6.8C4≀C2, C4⋊Dic33C4, (C2×C6).1Q16, (C2×Dic6)⋊2C4, C22⋊C8.1S3, (C2×C6).1SD16, (C2×C12).437D4, C6.3(C23⋊C4), (C22×C4).70D6, (C22×C6).39D4, C6.6(Q8⋊C4), C2.6(D12⋊C4), C22.4(C24⋊C2), C22.58(D6⋊C4), C12.48D4.1C2, C32(C23.31D4), C2.3(C2.Dic12), C6.C42.21C2, (C22×C12).40C22, C2.6(C23.6D6), (C2×C4).12(C4×S3), (C2×C12).24(C2×C4), (C3×C22⋊C8).1C2, (C2×C4).208(C3⋊D4), (C2×C6).39(C22⋊C4), SmallGroup(192,26)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C23.35D12
C1C3C6C2×C6C2×C12C22×C12C6.C42 — C23.35D12
C3C2×C6C2×C12 — C23.35D12
C1C22C22×C4C22⋊C8

Generators and relations for C23.35D12
 G = < a,b,c,d,e | a2=b2=c2=1, d12=cb=bc, e2=b, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=acd11 >

Subgroups: 256 in 80 conjugacy classes, 29 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, Q8, C23, Dic3, C12, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C24, Dic6, C2×Dic3, C2×C12, C2×C12, C22×C6, C2.C42, C22⋊C8, C22⋊Q8, Dic3⋊C4, C4⋊Dic3, C6.D4, C2×C24, C2×Dic6, C22×Dic3, C22×C12, C23.31D4, C6.C42, C3×C22⋊C8, C12.48D4, C23.35D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, SD16, Q16, C4×S3, D12, C3⋊D4, C23⋊C4, Q8⋊C4, C4≀C2, C24⋊C2, Dic12, D6⋊C4, C23.31D4, C23.6D6, C2.Dic12, D12⋊C4, C23.35D12

Smallest permutation representation of C23.35D12
On 48 points
Generators in S48
(2 25)(4 27)(6 29)(8 31)(10 33)(12 35)(14 37)(16 39)(18 41)(20 43)(22 45)(24 47)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 43)(9 44)(10 45)(11 46)(12 47)(13 48)(14 25)(15 26)(16 27)(17 28)(18 29)(19 30)(20 31)(21 32)(22 33)(23 34)(24 35)
(1 48)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 32)(10 33)(11 34)(12 35)(13 36)(14 37)(15 38)(16 39)(17 40)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 12 36 47)(2 23 37 34)(3 33 38 22)(4 44 39 9)(5 8 40 43)(6 19 41 30)(7 29 42 18)(10 15 45 26)(11 25 46 14)(13 24 48 35)(16 32 27 21)(17 20 28 31)

G:=sub<Sym(48)| (2,25)(4,27)(6,29)(8,31)(10,33)(12,35)(14,37)(16,39)(18,41)(20,43)(22,45)(24,47), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35), (1,48)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,12,36,47)(2,23,37,34)(3,33,38,22)(4,44,39,9)(5,8,40,43)(6,19,41,30)(7,29,42,18)(10,15,45,26)(11,25,46,14)(13,24,48,35)(16,32,27,21)(17,20,28,31)>;

G:=Group( (2,25)(4,27)(6,29)(8,31)(10,33)(12,35)(14,37)(16,39)(18,41)(20,43)(22,45)(24,47), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,43)(9,44)(10,45)(11,46)(12,47)(13,48)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(20,31)(21,32)(22,33)(23,34)(24,35), (1,48)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,33)(11,34)(12,35)(13,36)(14,37)(15,38)(16,39)(17,40)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,12,36,47)(2,23,37,34)(3,33,38,22)(4,44,39,9)(5,8,40,43)(6,19,41,30)(7,29,42,18)(10,15,45,26)(11,25,46,14)(13,24,48,35)(16,32,27,21)(17,20,28,31) );

G=PermutationGroup([[(2,25),(4,27),(6,29),(8,31),(10,33),(12,35),(14,37),(16,39),(18,41),(20,43),(22,45),(24,47)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,43),(9,44),(10,45),(11,46),(12,47),(13,48),(14,25),(15,26),(16,27),(17,28),(18,29),(19,30),(20,31),(21,32),(22,33),(23,34),(24,35)], [(1,48),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,32),(10,33),(11,34),(12,35),(13,36),(14,37),(15,38),(16,39),(17,40),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,12,36,47),(2,23,37,34),(3,33,38,22),(4,44,39,9),(5,8,40,43),(6,19,41,30),(7,29,42,18),(10,15,45,26),(11,25,46,14),(13,24,48,35),(16,32,27,21),(17,20,28,31)]])

39 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F24A···24H
order122222344444444466666888812121212121224···24
size11112222241212121224242224444442222444···4

39 irreducible representations

dim111111222222222222444
type++++++++-+-+
imageC1C2C2C2C4C4S3D4D4D6SD16Q16C4×S3C3⋊D4D12C4≀C2C24⋊C2Dic12C23⋊C4C23.6D6D12⋊C4
kernelC23.35D12C6.C42C3×C22⋊C8C12.48D4C4⋊Dic3C2×Dic6C22⋊C8C2×C12C22×C6C22×C4C2×C6C2×C6C2×C4C2×C4C23C6C22C22C6C2C2
# reps111122111122222444122

Matrix representation of C23.35D12 in GL6(𝔽73)

100000
010000
001000
000100
0000157
0000072
,
7200000
0720000
001000
000100
000010
000001
,
100000
010000
001000
000100
0000720
0000072
,
26650000
18590000
00146600
007700
0000950
00006564
,
59150000
55140000
007700
00146600
00004970
00007024

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,57,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[26,18,0,0,0,0,65,59,0,0,0,0,0,0,14,7,0,0,0,0,66,7,0,0,0,0,0,0,9,65,0,0,0,0,50,64],[59,55,0,0,0,0,15,14,0,0,0,0,0,0,7,14,0,0,0,0,7,66,0,0,0,0,0,0,49,70,0,0,0,0,70,24] >;

C23.35D12 in GAP, Magma, Sage, TeX

C_2^3._{35}D_{12}
% in TeX

G:=Group("C2^3.35D12");
// GroupNames label

G:=SmallGroup(192,26);
// by ID

G=gap.SmallGroup(192,26);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,85,92,422,387,268,570,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^12=c*b=b*c,e^2=b,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*c*d^11>;
// generators/relations

׿
×
𝔽